Magnetic Nanoparticles Coated with a Thermosensitive Polymer with Hyperthermia Properties

نویسندگان

  • Felisa Reyes-Ortega
  • Ángel V. Delgado
  • Elena K. Schneider
  • B. L. Checa Fernández
  • G. R. Iglesias
چکیده

Magnetic nanoparticles (MNPs) have been widely used to increase the efficacy of chemotherapeutics, largely through passive accumulation provided by the enhanced permeability and retention effect. Their incorporation into biopolymer coatings enables the preparation of magnetic field-responsive, biocompatible nanoparticles that are well dispersed in aqueous media. Here we describe a synthetic route to prepare functionalized, stable magnetite nanoparticles (MNPs) coated with a temperature-responsive polymer, by means of the hydrothermal method combined with an oil/water (o/w) emulsion process. The effects of both pH and temperature on the electrophoretic mobility and surface charge of these MNPs are investigated. The magnetite/polymer composition of these systems is detected by Fourier Transform Infrared Spectroscopy (FTIR) and quantified by thermogravimetric analysis. The therapeutic possibilities of the designed nanostructures as effective heating agents for magnetic hyperthermia are demonstrated, and specific absorption rates as high as 150 W/g, with 20 mT magnetic field and 205 kHz frequency, are obtained. This magnetic heating response could provide a promising nanoparticle system for combined diagnostics and cancer therapy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Magnetic hyperthermia and MRI relaxometry with dendrimer coated iron oxide nanoparticles

Introduction: Recently, some studies have focused on dendrimer nanopolymers as an MRI contrast agent or a vehicle for gene and drug delivery. Considering the suitable properties of these materials, they are appropriate candidates for coating iron oxide nanoparticles which are applied to magnetic hyperthermia. To the best of our knowledge, the novelty of this study is the inves...

متن کامل

Preparation of modified magnetic nanoparticles for in vitro delivery of ceftriaxone

In this research, a novel method is reported for the surface grafting of n-vinylcaprolactam as a thermosensitive agent and 3-allyloxy-1,2-propandiol with an affinity toward ceftriaxone onto modified magnetic nanoparticles by 3-mercaptopropyltrimethoxysilane. The grafted nanoparticles were characterized by Fourier Transform Infrared Spectroscopy, Elemental Analysis, and Vibrating Sample Magnetom...

متن کامل

Pullulan Acetate Coated Magnetite Nanoparticles for Hyper- Thermia: Preparation, Characterization and In Vitro Experiments

Amphipathic polymer pullulan acetate (PA)-coated magnetic nanoparticles were prepared and characterized by various physicochemical means. The cytotoxicity and cellular uptake of the magnetic nanoparticles were examined. The hyperthermic effect of the magnetic nanoparticles on tumor cells was evaluated. Transmission electron microscopy (TEM) showed that the PA coated magnetic nanoparticles (PAMN...

متن کامل

Thermoresponsive core-shell magnetic nanoparticles for combined modalities of cancer therapy.

Thermoresponsive polymer-coated magnetic nanoparticles loaded with anti-cancer drugs are of considerable interest for novel multi-modal cancer therapies. Such nanoparticles can be used for magnetic drug targeting followed by simultaneous hyperthermia and drug release. Gamma-Fe(2)O(3) iron oxide magnetic nanoparticles (MNP) with average sizes of 14, 19 and 43 nm were synthesized by high temperat...

متن کامل

Thermoresponsive magnetic composite nanomaterials for multimodal cancer therapy.

The synthesis, characterization and property evaluation of drug-loaded polymer-coated magnetic nanoparticles (MNPs) relevant to multimodal cancer therapy has been studied. The hyperthermia and controlled drug release characteristics of these particles was examined. Magnetite (Fe(3)O(4))-poly-n-(isopropylacrylamide) (PNIPAM) composite MNPs were synthesized in a core-shell morphology by dispersio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017